Author:
Manufacturer: Intel

Core M 5Y70 Early Testing

During a press session today with Intel, I was able to get some early performance results on Broadwell-Y in the form of the upcoming Core M 5Y70 processor.

llama1.jpg

Testing was done on a reference design platform code named Llama Mountain and at the heart of the system is the Broadwell-Y designed dual-core CPU, the Core M 5Y70, which is due out later this year. Power consumption of this system is low enough that Intel has built it with a fanless design. As we posted last week, this processor has a base frequency of just 1.10 GHz but it can boost as high as 2.6 GHz for extra performance when it's needed.

Before we dive into the actual result, you should keep in mind a couple of things. First, we didn't have to analyze the systems to check driver revisions, etc., so we are going on Intel's word that these are setup as you would expect to see them in the real world. Next, because of the disjointed nature of test were were able to run, the comparisons in our graphs aren't as great as I would like. Still, the results for the Core M 5Y70 are here should you want to compare them to any other scores you like.

First, let's take a look at old faithful: CineBench 11.5.

cb11.png

UPDATE: A previous version of this graph showed the TDP for the Intel Core M 5Y70 as 15 watts, not the 4.5 watt listed here now. The reasons are complicated. Even though the Intel Ark website lists the TDP of the Core M 5Y70, Intel has publicly stated the processor will make very short "spikes" at 15 watts when in its highest Turbo Boost modes. It comes to a discussion of semantics really. The cooling capability of the tablet is only targeted to 4.5-6.0 watts and those very short 15 watt spikes can be dissipated without the need for extra heatsink surface...because they are so short. SDP anyone? END UPDATE

With a score of 2.77, the Core M 5Y70 processor puts up an impressive fight against CPUs with much higher TDP settings. For example, Intel's own Pentium G3258 gets a score of 2.71 in CB11, and did so with a considerably higher thermal envelope. The Core i3-4330 scores 38% higher than the Core M 5Y70 but it requires a TDP 3.6-times larger to do so. Both of AMD's APUs in the 45 watt envelope fail to keep up with Core M.

Continue reading our preview of Intel Core M 5Y70 Performance!!

ASUS ZenBook UX305 Will Be Based on Core M (Broadwell)

Subject: General Tech, Systems, Mobile | September 8, 2014 - 10:49 PM |
Tagged: Intel, asus, core m, broadwell-y, Broadwell, 14nm, ultrabook

This will probably be the first of many notebooks announced that are based on Core M. These processors, which would otherwise be called Broadwell-Y, are the "flagship" CPUs to be created on Intel's 14nm, tri-gate fabrication process. The ASUS ZenBook UX305 is a 13-inch clamshell notebook with one of three displays: 1920x1200 IPS, 1920x1200 multi-touch IPS, or 3200x1800 multi-touch IPS. That is a lot of pixels to pack into such a small display.

asus-zenbook-ux305-twinhero.jpg

While the specific processor(s) are not listed, it will use Intel HD Graphics 5300 for its GPU. This is new with Broadwell, albeit their lowest tier. Then again, last generation's 5000 and 5100 were up in the 700-800 GFLOP range, which is fairly high (around medium quality settings for Battlefield 4 at 720p). Discrete graphics will not be an option. It will come with a choice between 4GB and 8GB of RAM. Customers can also choose between a 128GB SSD, or a 256GB SSD. It has a 45Wh battery.

Numerous connectivity options are available: 802.11 a, g, n, or ac; Bluetooth 4.0; three USB 3.0 ports; Micro HDMI (out); a 3.5mm headphone/mic combo jack; and a microSD card slot. It has a single, front-facing, 720p webcam.

In short, it is an Ultrabook. Pricing and availability are currently unannounced.

Source: ASUS

Intel Announces Core M Processor Lineup Using Broadwell-Y

Subject: Processors | September 5, 2014 - 09:11 AM |
Tagged: Intel, core m, broadwell-y, Broadwell, 14nm

In a somewhat surprising fashion, Intel has decided to announce (again) the Core M processor family that will be shipping this fall and winter using the Broadwell-Y SoC. I was able to visit Portland and talk with the process technology and architecture teams back in early August so much of the news coming out today about the improvements of 14nm tri-gate transistors, the smaller package size of Broadwell-Y and the goals for thinner, fanless designs is going to be a repeat for frequent PC Perspective readers. (You can see that original story, Intel Core M Processor: Broadwell Architecture and 14nm Process Reveal.)

What is new information today are specifics on the clock speeds and SKU offerings.

  5Y70 5Y10a 5Y10
Cores/Threads 2/4 2/4 2/4
Base Freq 1.10 GHz 800 MHz 800 MHz
Max Single Core Turbo 2.6 GHz 2.0 GHz 2.0 GHz
Max Dual Core Turbo 2.6 GHz 2.0 GHz 2.0 GHz
Max Quad Core Turbo N/A N/A N/A
Graphics Intel HD Graphics 5300 Intel HD Graphics 5300 Intel HD Graphics 5300
Graphics Base/Max Freq 100/850 MHz 100/800 MHz 100/800 MHz
LPDDR3L Memory Speed 1600 MHz 1600 MHz 1600 MHz
L3 Cache 4MB 4MB 4MB
TDP 4.5 watts 4.5 watts 4.5 watts
Intel vPro Y N N
Intel TXT Y N N
Intel VT-d Y Y Y
Intel VT-x Y Y Y
AES-NI Y Y Y
1K Pricing $281 $281 $281

Intel has planned three options, all with the same $281 pricing, though obviously based on volume and other deals with OEMs, these are likely to shift. The Core M 5Y70 is the highest performance part with a base clock speed of 1.10 GHz that can scale up to 2.6 GHz with one or both cores active. The other two parts launching today both feature 800 MHz base clocks and 2.0 GHz maximum Turbo speeds.

With that scaling information, and the wide range that the Intel HD Graphics 5300 can hit (100-800 MHz) Intel is doubling down on the benefits of fast and reliable Turbo Boost technology to give you high frequencies only when you need it most. This conserves power consumption the vast majority of time and allows Intel's partners to build fanless designs that are incredibly thin.

The 5Y10 and 5Y10a differ only in that the non-A variant has a configurable TDP down the 4.0 watts should the vendor opt for that.

bwdy1.jpg

Intel is also giving us a more detailed look at the Broadwell-Y PCH that includes a lot of I/O for such a small platform. Two channels of USB 3.0 can support four total ports and as many as four SATA 6G storage units can be integrated as well. These Y-SKUs look like they have 12 lanes of PCIe 2.0 available to them should a notebook vendor decide to use PCIe storage solutions (like M.2) rather than relying purely on SATA. 

bwdy2.jpg

At least one partner has already announced a Core M product: the Lenovo ThinkPad Helix. It appears to be an amazing 11.6-in convertible tablet design. Without a doubt we'll encouter numerous other designs at the Intel Developer Forum that starts next Tuesday.

Source: Intel
Author:
Subject: Processors
Manufacturer: Intel

Coming in 2014: Intel Core M

The era of Broadwell begins in late 2014 and based on what Intel has disclosed to us today, the processor architecture appears to be impressive in nearly every aspect. Coming off the success of the Haswell design in 2013 built on 22nm, the Broadwell-Y architecture will not only be the first to market with a new microarchitecture, but will be the flagship product on Intel’s new 14nm tri-gate process technology.

The Intel Core M processor, as Broadwell-Y has been dubbed, includes impressive technological improvements over previous low power Intel processors that result in lower power, thinner form factors, and longer battery life designs. Broadwell-Y will stretch into even lower TDPs enabling 9mm or small fanless designs that maintain current battery lifespans. A new 2nd generation FIVR with modified power delivery design allows for even thinner packaging and a wider range of dynamic frequencies than before. And of course, along with the shift comes an updated converged core design and improved graphics performance.

All of these changes are in service to what Intel claims is a re-invention of the notebook. Compared to 2010 when the company introduced the original Intel Core processor, thus redirecting Intel’s direction almost completely, Intel Core M and the Broadwell-Y changes will allow for some dramatic platform changes.

broadwell-12.jpg

Notebook thickness will go from 26mm (~1.02 inches) down to a small as 7mm (~0.27 inches) as Intel has proven with its Llama Mountain reference platform. Reductions in total thermal dissipation of 4x while improving core performance by 2x and graphics performance by 7x are something no other company has been able to do over the same time span. And in the end, one of the most important features for the consumer, is getting double the useful battery life with a smaller (and lighter) battery required for it.

But these kinds of advancements just don’t happen by chance – ask any other semiconductor company that is either trying to keep ahead of or catch up to Intel. It takes countless engineers and endless hours to build a platform like this. Today Intel is sharing some key details on how it was able to make this jump including the move to a 14nm FinFET / tri-gate transistor technology and impressive packaging and core design changes to the Broadwell architecture.

Intel 14nm Technology Advancement

Intel consistently creates and builds the most impressive manufacturing and production processes in the world and it has helped it maintain a market leadership over rivals in the CPU space. It is also one of the key tenants that Intel hopes will help them deliver on the world of mobile including tablets and smartphones. At the 22nm node Intel was the first offer 3D transistors, what they called tri-gate and others refer to as FinFET. By focusing on power consumption rather than top level performance Intel was able to build the Haswell design (as well as Silvermont for the Atom line) with impressive performance and power scaling, allowing thinner and less power hungry designs than with previous generations. Some enthusiasts might think that Intel has done this at the expense of high performance components, and there is some truth to that. But Intel believes that by committing to this space it builds the best future for the company.

Continue reading our reveal of Intel's Broadwell Architecture and 14nm Process Technology!!