Qualcomm Reveals New Flagship Snapdragon 808 and 810 64-Bit SoCs Coming In 2015

Subject: Mobile | April 8, 2014 - 07:47 PM |
Tagged: SoC, snapdragon, qualcomm, LTE, ARMv8, adreno, 64-bit

Qualcomm has announced two new flagship 64-bit SoCs with the Snapdragon 808 and Snapdragon 810. The new chips will begin sampling later this year and should start showing up in high end smartphones towards the second half of 2015. The new 800-series parts join the previously announced mid-range Snapdragon 610 and 615 which are also 64-bit ARMv8 parts.

The Snapdragon 810 is Qualcomm's new flagship processor. The chip features four ARM Cortex A57 cores and four Cortex A53 cores in a big.LITTLE configuration, an Adreno 430 GPU, and support for Category 6 LTE (up to 300 Mbps downloads) and LPDDR4 memory. This flagship part uses the 64-bit ARMv8 ISA. The new Adreno 430 GPU integrated in the SoC is reportedly 30% faster than the Adreno 420 GPU in the Snapdragon 805 processor.

Qualcomm Snapdragon SoC.jpg

In addition to the flagship part, Qualcomm is also releasing the Snapdragon 808 which pairs two Cortex A57 CPU cores and four Cortex A53 CPU cores in a big.LITTLE configuration with an Adreno 418 (approximately 20% faster than the popular Adreno 320) GPU. This chip supports LPDDR3 memory and Qualcomm's new Category 6 LTE modem.

Both the 808 and 810 have Adreno GPUs which support OpenGL ES 3.1. The new chips support a slew of wireless I/O including Categrory 6 LTE, 802.11ac Wi-Fi, Bluetooth 4.1, and NFC.

Qualcomm is reportedly planning to produce these SoCs on a 20nm process. For reference, the mid-range 64-bit Snapdragon 610 and 615 use a 28nm LP manufacturing process. The new 20nm process (presumably from TSMC) should enable improved battery life and clockspeed headroom on the flagship parts. Exactly how big the mentioned gains will be will depend on the specific manufacturing process, with smaller gains from a bulk/planar process shrink or greater improvements coming from more advanced methods such as FD-SOI if the new chip on a 20nm process is the same transistor count as one on a 28nm process (which is being used in existing chips).

The 808 and 810 parts are the new high-end 64-bit chips which will effectively supplant the 32-bit Snapdragon 805 which is a marginal update over the Snapdragon 800. The naming conventions and product lineups are getting a bit crazy here, but suffice it to say that the 808 and 810 are the effective successors to the 800 while the 805 is a stop-gap upgrade while Qualcomm moves to 64-bit ARMv8 and secures manufacturing for the new chips which should be slightly faster CPU-wise, notably faster GPU-wise and more capable with the faster cellular modem support and 64-bit ISA support.

For those wondering, the press release also states that the company is still working on development of its custom 64-bit Krait CPU architecture. However, it does not appear that 64-bit Krait will be ready by the first half of 2015, which is why Qualcomm has opted to use ARM's Cortex A57 and A53 cores in its upcoming flagship 808 and 810 SoCs.

Source: Qualcomm

Computex 2013: MiTAC Announces High Density 7-Star ARMv8-Powered Server

Subject: General Tech, Systems | June 4, 2013 - 11:44 PM |
Tagged: computex 2013, computex, X-Gene, mitac, ARMv8, appliedmicro, 7-star, 64-bit

During Computex, MiTAC announced a new high density "7-Star" ARMv8 server. Aimed at the enterprise market, the 7-Star platform is a 4U server that holds up to 18 compute cards. Each compute card contains an eight-core ARMv8-based X-Gene processor from AppliedMicro, two DDR3 DIMM slots, and space for two 2.5"/3.5" internal storage drives (SSD or HDD). The compute cards use a 10G SFP+ and a single Gigabit Ethernet port for networking purposes.

MiTAC 7-Star Shown Off At Computex.jpg

Of course, the interesting bit about the 7-Star is that it is one of the first server to use processors based on ARM's 64-bit ARMv8 architecture. MiTAC worked with ARM and AppliedMicro on the project, and it should be available later this year. It is currently being shown off at the ARM Holdings demo suite in Taipei, Taiwan. I'm intested to see how well these 64-bit ARM servers do, especially with new low power chips from Intel and AMD on the way!

Read more about ARMv8 at PC Perspective.

The full press release is below:

Source: MiTAC

ARM Details First Quarter 2013 Finances, Company Revenue Up 26% YoY

Subject: General Tech | April 25, 2013 - 01:14 AM |
Tagged: SoC, mobile, ARMv8, arm

British chip design company ARM recently released an unaudited financial report with details on its Q1 2013 performance. The mobile SoC giant announced that it saw 2.6 million ARM chips in the first quarter of this year, a 35% improvement over last year and further evidence that ARM still dominates the low-power mobile market.

In fact, the chip designer made $94.9 million in licensing all those ARM chips, which was a big chunk of the company’s total Q1 2013 revenue of $263.9 million. Revenue was up by 26% versus the first quarter of the previous year (Q1 2012), which was only $209.4 million. Further, ARM’s profit (pre-tax) is 89.4 million pounds or approximately $137 million USD.

ARM Logo.jpg

ARM saw revenue from both licensing and royalties increase year over year (YoY) by 24% and 33% which indicates that more companies are jumping into the mobile and embedded markets with ARM chips or licenses to make custom designs of their own. According to the report, the company sold five-times more Mali GPUs, saw a 50% increase in ARM-powered embedded devices, and noticed a 25% increase in ARM mobile devices year over year respectively. ARM has also started moving ARMv8 (64-bit ARM) licenses. Of the total 22 licenses in Q1 2013, 7 of the licenses were for ARM’s Cortex-A50 series processors along with a single ARMv8 license (a total of 9 to date). In Q1 2013, ARM also sold three Mali GPU licenses, and one of those was for the company’s high-end Skymir GPU.

In all, ARM had a good first quarter and is showing signs of increased growth. With ARMv8 on the horizon, I am interested to see the company’s numbers next year and how they compare year over year as ARM attempts to take over the server room in particular. The profits and revenue are modest in comparison to X86 giant Intel's Q1 2013 results, but are not bad at all for a company that doesn’t produce chips itself!

You can find ARM's Q1 2013 report here.

Source: ARM

Calxeda gains some allies in the Server War

Subject: General Tech | October 10, 2012 - 01:57 PM |
Tagged: calxeda, arm, 64bit, ARMv8

There are two very big hurdles for Calxeda to overcome if it wants its ARM based servers to make any headway in the market.  The first is OS support which could be the hardest to overcome as they are dependant on programmers making Linux distributions like Ubuntu, Fedora, and openSUSE compatible with ARM chips, Microsoft has already announced that the first version of Windows Server 2012 will not support ARM.  Compatibility is something that Calxeda cannot fix on its own, however the lack of a x64 chip is something that they can work to solve and thanks to the $55M they just received they can now move forward on finishing the chip design.  That money came from an impressive list of allies including the current parent company of GLOBALFOUNDRIES, ATIC as well as ARM Holdings, Battery Ventures, Flybridge Capital Partners, and Highland Capital Partners and will be used to design the next Cortex A15 and an as of yet unnamed x64 chip.  Check out The Register for more.

calxeda-ECore2.jpg

"ARM chip upstart Calxeda is lining its coffers as it prepares to do battle with its 32-bit EnergyCore ECX-1000 processors, and two more cores in its roadmap, to conquer some corner of the server world.

Calxeda now has more than 100 employees, who work in its Austin, Texas headquarters as well as in development labs in Silicon Valley and throughout Asia, and it needs cash as it ramps up sales and etches future EnergyCore processors to handle heavy duty workloads and 64-bit code."

Here is some more Tech News from around the web:

Tech Talk

Source: The Register

ARM, TSMC to Produce 64-bit Processors With 3D Transistors

Subject: Processors | July 24, 2012 - 12:07 PM |
Tagged: TSMC, ARMv8, arm, 64-bit, 3d transistors, 20nm

 

Yesterday ARM announced a multi-year partnership with fab TSMC to produce sub-20nm processors that utilize 3D FinFET transistors. The collaboration and data sharing between the two companies will allow the fabless ARM SoC company the ability to produce physical processors based on its designs and will allow TSMC a platform to further its process nodes and FinFET transistor technology. The first TSMC-produced processors will be based on the ARMv8 architecture and will be 64-bit compatible.

ARMv8.jpg

The addition of 3D transistors will allow the ARM processors to be even more power efficient and suitable for both mobile devices. Alternatively, it could allow for higher clockspeeds at the same TDP ratings as current chips. The other big news is that the chips will be moving to a 64-bit compatible design, which is huge considering ARM processors have traditionally been 32-bit. By moving to 64-bit, ARM is positioning itself for server and workstation adoption, especially with the recent ARM-compatible Windows 8 build due to be released soon. Granted, ARM SoCs have a long way to go before taking market share from Intel and AMD in the desktop and server markets in a big way but it is slowly but surely becoming more competitive with the x86-64 giants.

TSMC’s R&D Vice President Cliff Hou stated that the collaboration between ARM and TSMC will allow TSMC to optimize its FinFET process to target “high speed, low voltage and low leakage.” ARM further qualified that the partnership would give ARM early access to the 3D transistor FinFET process that could help create advanced SoC designs and ramp up volume production.

I think this is a very positive move for ARM, and it should allow them to make much larger inroads into the higher-end computing markets and see higher adoption beyond mobile devices. On the other hand, it is going to depend on TSMC to keep up and get the process down. Considering the issues with creating enough 28nm silicon to meet demand for AMD and NVIDIA’s latest graphics cards, a sub-20nm process may be asking a lot. Here’s hoping that it’s a successful venture for both companies, however.

You can find more information in the full press release.

Source: Maximum PC

ARM follows Intel and AMD's 64 bit lead

Subject: General Tech | October 31, 2011 - 11:57 AM |
Tagged: cortex, ARMv8, arm, 64bit

We've now some more detailed information on ARMs new 64 bit ARMv8 processor and its strengths and weaknesses.  For the most part it resembles the 64 bit architecture that Intel and AMD use, an extended 32 bit architecture with several hold overs.  Perhaps the most disappointing is that ARM has the same 48 bit limit to virtual address space that the competition has.  If ARM had managed to overcome the limitations of canonical form addresses, they would have something that neither Intel nor AMD could bring to the server room. ARM desperately needs somthing to offer that the competition cannot if they are to convince admins to move from a familiar architecture to a brand new ARM architecture; power savings probably won't be enough.  Drop by The Inquirer to read up on the improved exception levels and encryption acceleration of the new ARMv8 architecture.

arm_holdings_arm_v8.jpg

"At the ARM TechCon conference in Santa Clara on Thursday, the top brass at ARM Holdings, the company that controls the core designs and licenses them to a slew of chip makers for modification in smartphones, tablets, and other embedded devices, showed off the new ARMv8 architecture. It's an incremental improvement over the current v7 architecture, just like the 64-bit extensions to the original 32-bit x86 processors from Intel and AMD were."

Here is some more Tech News from around the web:

Tech Talk

 

Source: The Register