Podcast #409 - GTX 1060 Review, 3DMark Time Spy Controversy, Tiny Nintendo and more!

Subject: General Tech | July 21, 2016 - 12:21 PM |
Tagged: Wraith, Volta, video, time spy, softbank, riotoro, retroarch, podcast, nvidia, new, kaby lake, Intel, gtx 1060, geforce, asynchronous compute, async compute, arm, apollo lake, amd, 3dmark, 10nm, 1070m, 1060m

PC Perspective Podcast #409 - 07/21/2016

Join us this week as we discuss the GTX 1060 review, controversy surrounding the async compute of 3DMark Time Spy and more!!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

This episode of the PC Perspective Podcast is sponsored by Casper!

Hosts:  Ryan Shrout, Allyn Malventano, Jeremy Hellstrom, and Josh Walrath

Program length: 1:34:57
  1. Week in Review:
  2. 0:51:17 This episode of the PC Perspective Podcast is sponsored by Casper!
  3. News items of interest:
  4. 1:26:26 Hardware/Software Picks of the Week
    1. Ryan: Sapphire Nitro Bot
    2. Allyn: klocki - chill puzzle game (also on iOS / Android)
  5. Closing/outro

Report: ARM Holdings Purchased by SoftBank for $32 Billion

Subject: Processors, Mobile | July 18, 2016 - 12:03 AM |
Tagged: softbank, SoC, smartphones, mobile cpu, Cortex-A73, ARM Holdings, arm, acquisition

ARM Holdings is to be aquired by SoftBank for $32 billion USD. This report has been confirmed by the Wall Street Journal, who states that an official annoucement of the deal is likely on Monday as "both companies’ boards have agreed to the deal".

arm-holdings.jpg

(Image credit: director.co.uk)

"Japan’s SoftBank Group Corp. has reached a more than $32 billion deal to buy U.K.-based chip-designer ARM HoldingsPLC, marking a significant push for the Japanese telecommunications giant into the mobile internet, according to a person familiar with the situation." - WSJ

ARM just announced their newest CPU core, the Cortex-A73, at the end of May, with performance and efficiency improvements over the current Cortex-A72 promised with the new architecture.

ARM_01.png

(Image credit: AnandTech)

We will have to wait and see if this aquisition will have any bearing on future product development, though it seems the acquisition targets the significant intellectual property value of ARM, whose designs can be found in most smartphones.

Podcast #404 - Crucial MX300, E3 hardware news, GTX 1080 Shortages and more!

Subject: General Tech | June 16, 2016 - 11:43 AM |
Tagged: XPoint, xbox one, void, video, Strider, Silverstone, rx 480, rx 470, rx 460, podcast, PHAB2, Optane, MX300, Lenovo, GTX 1080, Egil, crucial, corsair, asus, arm

PC Perspective Podcast #404 - 06/16/2016

Join us this week as we discuss the new Crucial MX300 SSD, news on upcoming Xbox hardware changes, GTX 1080 shortages and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

This episode of the PC Perspective Podcast is sponsored by Lenovo!

Hosts:  Ryan Shrout, Allyn Malventano, Jeremy Hellstrom, and Josh Walrath

Program length: 1:48:30
  1. Week in Review:
  2. News items of interest:
    1. 0:39:00 Xbox E3 Hardware Discussion
    2. 0:49:50 GeForce GTX 1080 Shortages?
  3. Hardware/Software Picks of the Week
    1. Ryan: Trackr
    2. Allyn: Safely Remove USB devices (or figure out what’s stopping them)
  4. Closing/outro

Author:
Subject: General Tech
Manufacturer: ARM

ARM Releases Egil Specs

The final product that ARM showed us at that Austin event is the latest video processing unit that will be integrated into their Mali GPUs.  The Egil video processor is a next generation unit that will be appearing later this year with the latest products that utilize Mali GPUs up and down the spectrum.  It is not tied to the latest G71 GPU, but rather can be used with a multitude of current Mali products.

egil_00.png

Video is one of the biggest usage cases for modern SOCs in mobile devices.  People constantly stream and record video from their handhelds and tablets, and there are some real drawbacks in current video processor products from a variety of sources.  We have seen the amazing increase in pixel density on phones and tablets and the power draw to render video effectively on these products has gone up.  We have also seen the introduction of new codecs that require a serious amount of processing capabilities to decode.

egil_01.png

Egil is a scalable product that can go from one core to six.  A single core can display video from a variety of codecs at 1080P and up to 80 fps.  The six core solution can play back 4K video at 120 Hz.  This is assuming that the Egil processor is produced on a 16nm FF process or smaller and running at 800 MHz.  This provides a lot of flexibility with SOC manufacturers that allows them to adequately tailor their products for specific targets and markets.

egil_02.png

The cores themselves are fixed function blocks with dedicated controllers and control logic.  Previous video processors were more heavy on the decode aspects rather than encode.  Now that we have more pervasive streaming from mobile devices and cameras/optics that can support higher resolutions and bitrates, ARM has redesigned Egil to offer extensive encoding capabilities.  Not only does it add this capability, but it enhances it by not only decoding at 4K but being able to encode four 1080p30 streams at the same time.

egil_03.png

Egil will eventually find its way into other products such as TVs.  These custom SOCs will be even more important as 4K playback and media become more common plus potential new functionality that has yet to be implemented effectively on TVs.  For the time being we will likely see this in mobile first, with the initial products hitting the market in the second half of 2016.

egil_04.png

ARM is certainly on a roll this year with introducing new CPU, GPU, and now video processors.  We will start to see these products being introduced throughout the end of this year and into the next.  The company certainly has not been resting or letting potential competitors get the edge on them.  Their products are always focused on consuming low amounts of power, but the potential performance looks to satisfy even power hungry users in the mobile and appliance markets.  Egil is another solid looking member to the lineup that brings some impressive performance and codec support for both decoding and encoding.

Author:
Subject: General Tech
Manufacturer: ARM

New Products for 2017

PC Perspective was invited to Austin, TX on May 11 and 12 to participate in ARM’s yearly tech day.  Also invited were a handful of editors and analysts that cover the PC and mobile markets.  Those folks were all pretty smart, so it is confusing as to why they invited me.  Perhaps word of my unique talent of screenshoting PDFs into near-unreadable JPGs preceded me?  Regardless of the reason, I was treated to two full days of in-depth discussion of the latest generation of CPU and GPU cores, 10nm test chips, and information on new licensing options.

A73_formfactors.png

Today ARM is announcing their next CPU core with the introduction of the Cortex-A73. They are also unwrapping the latest Mali-G71 graphics technology.  Other technologies such as the CCI-550 interconnect are also revealed.  It is a busy and important day for ARM, especially in light of Intel seemingly abandoning the sub-milliwatt mobile market.

A73_boost.png

Cortex-A73

ARM previously announced the Cortex-A72 in February, 2015.  Since that time it has been seen in most flagship mobile devices in late 2015 and throughout 2016.  The market continues to evolve, and as such the workloads and form factors have pushed ARM to continue to develop and improve their CPU technology.

A73_perf_comp_A72.png

The Sofia Antipolis, France design group is behind the new A73.  The previous several core architectures had been developed by the Cambridge group.  As such, the new design differs quite dramatically from the previous A72.  I was actually somewhat taken aback by the differences in the design philosophy of the two groups and the changes between the A72 and A73, but the generational jumps we have seen in the past make a bit more sense to me.

The marketplace is constantly changing when it comes to workloads and form factors.  More and more complex applications are being ported to mobile devices, including hot technologies like AR and VR.  Other technologies include 3D/360 degree video, greater than 20 MP cameras, and 4K/8K displays and their video playback formats.  Form factors on the other hand have continued to decrease in size, especially in overall height.  We have relatively large screens on most premium devices, but the designers have continued to make these phones thinner and thinner throughout the years.  This has put a lot of pressure on ARM and their partners to increase performance while keeping TDPs in check, and even reducing them so they more adequately fit in the TDP envelope of these extremely thin devices.

A73_power_comp_A72.png

Click here to continue reading about ARM's Tech Day 2016!

Podcast #400 - Talking GTX 1080 Performance, GTX 1070 specs, AMD Polaris leaks and more!

Subject: General Tech | May 19, 2016 - 12:08 PM |
Tagged: video, radeon, polaris 11, polaris 10, Polaris, podcast, pascal, nvidia, GTX 1080, gtx 1070, gtx, geforce, arm, amd, 10nm

PC Perspective Podcast #400 - 05/19/2016

Join us this week as we discuss the GTX 1080 performance and features, official specifications of the GTX 1070, new Polaris specification rumors, ARM's 10nm chip test and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts: Ryan Shrout, Jeremy Hellstrom, Josh Walrath, and Allyn Malventano

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

Author:
Subject: Processors
Manufacturer: ARM

10nm Sooner Than Expected?

It seems only yesterday that we had the first major GPU released on 16nm FF+ and now we are talking about ARM about to receive their first 10nm FF test chips!  Well, in fact it was yesterday that NVIDIA formally released performance figures on the latest GeForce GTX 1080 which is based on TSMC’s 16nm FF+ process technology.  Currently TSMC is going full bore on their latest process node and producing the fastest current graphics chip around.  It has taken the foundry industry as a whole a lot longer to develop FinFET technology than expected, but now that they have that piece of the puzzle seemingly mastered they are moving to a new process node at an accelerated rate.

arm_td01.png

TSMC’s 10nm FF is not well understood by press and analysts yet, but we gather that it is more of a marketing term than a true drop to 10 nm features.  Intel has yet to get past 14nm and does not expect 10 nm production until well into next year.  TSMC is promising their version in the second half of 2016.  We cannot assume that TSMC’s version will match what Intel will be doing in terms of geometries and electrical characteristics, but we do know that it is a step past TSMC’s 16nm FF products.  Lithography will likely get a boost with triple patterning exposure.  My guess is that the back end will also move away from the “20nm metal” stages that we see with 16nm.  All in all, it should be an improved product from what we see with 16nm, but time will tell if it can match the performance and density of competing lines that bear the 10nm name from Intel, Samsung, and GLOBALFOUNDRIES.

ARM has a history of porting their architectures to new process nodes, but they are being a bit more aggressive here than we have seen in the past.  It used to be that ARM would announce a new core or technology, and it would take up to two years to be introduced into the market.  Now we are seeing technology announcements and actual products hitting the scenes about nine months later.  With the mobile market continuing to grow we expect to see products quicker to market still.

arm_td02.png

The company designed a simplified test chip to tape out and send to TSMC for test production on the aforementioned 10nm FF process.  The chip was taped out in December, 2015.  The design was shipped to TSMC for mask production and wafer starts.  ARM is expecting the finished wafers to arrive this month.

Click here to continue reading about ARM's test foray into 10nm!

Canonical’s First Ubuntu Tablet Available For Pre-Order

Subject: General Tech | March 30, 2016 - 06:16 PM |
Tagged: ubuntu, linux, mediatek, SoC, arm, tablet

Canonical, the company behind the Ubuntu Linux operating system, is now offering up its first Ubuntu tablet with Spanish manufacturing partner BQ. The Aquaris M10 Ubuntu Edition is a 10-inch tablet powered by ARM and loaded with Ubuntu 15.04.

The tablet features an all black (or white) case with rounded edges and a matte back. Mobilegeeks managed to get hands on with the Android version of the Aquaris M10 which you can check out here. The internals are a bit different on the Ubuntu Edition, but the chassis and design remains the same. It measures 8.2mm thick and weighs in at 470 grams (1.03 pounds). The front is dominated by a 10.1” AHVA touchscreen display that comes in either 1280 x 800 or Full HD 1920 x 1080 resolution depending on the model. A capacitive home button sits below along with two 0.7W speakers while a 5MP webcam is positioned above the display. There is an 8MP rear camera, and the sides hold Micro HDMI, Micro USB, Micro SD, and 3.5mm audio ports.

BQ Aquaris M10 Ubuntu Edition Tablet PC.jpg

The Aquaris M10 Ubuntu Edition is powered by a quad core MediaTek SoC with Mali-T720MP2 graphics, 2GB of RAM, and 16GB of eMMC storage (with approximately 10GB usable by end users) that can be expanded via Micro SD cards up to 64GB. The Full HD model uses the MediaTek MT8163A clocked at 1.5 GHz while the HD Aquaris M10 uses the slightly lower clocked MT8163B running at 1.3 GHz.

Wireless capabilities include 802.11n (dual band) Wi-Fi, Bluetooth 4.0, and GPS. It is powered by a 7,280 mAh Li-Po battery. BQ has pre-loaded the tablet with Ubuntu 15.04 which users will likely want to update once drivers are ready as it is End-of-Life.

The Aquaris M10 is available for pre-order now, with expected ship dates in early April. The HD Ubuntu Edition tablet is listed at €259.90 ($295) while the Full HD version will run you €299.90 ($340). Currently, the Full HD tablet comes in black and the HD tablet is all white. Both models come with a screen protector and case as a pre-order bonus.

BQ Aquaris M10 Ubuntu Edition Tablet.jpg

It is interesting to see an official Ubuntu tablet, but I wonder if this is too little, too late for the open source OS. Canonical is positioning this as a daily driver that can be a tablet when you want to be mobile, a PC when propped up with a case and paired with wireless keyboard and mouse, and a media streamer when connecting it to the big screen with HDMI. I would expect performance to improve over time once the community gets a hold of it and starts tweaking it though the hardware is going to be a limiting factor. I want a Linux tablet to succeed, and hopefully this will open the door for higher end models. I don’t see myself jumping on this particular one though at this price.

Are you excited for the Ubuntu Edition M10?

Source: Canonical

ARM Partners with TSMC to Produce SoCs on 7nm FinFET

Subject: Processors | March 15, 2016 - 12:52 PM |
Tagged: TSMC, SoC, servers, process technology, low power, FinFET, datacenter, cpu, arm, 7nm, 7 nm FinFET

ARM and TSMC have announced their collaboration on 7 nm FinFET process technology for future SoCs. A multi-year agreement between the companies, products produces on this 7 nm FinFET process are intended to expand ARM’s reach “beyond mobile and into next-generation networks and data centers”.

tsmc-headquarters.jpg

TSMC Headquarters (Image credit: AndroidHeadlines)

So when can we expect to see 7nm SoCs on the market? The report from The Inquirer offers this quote from TSMC:

“A TSMC spokesperson told the INQUIRER in a statement: ‘Our 7nm technology development progress is on schedule. TSMC's 7nm technology development leverages our 10nm development very effectively. At the same time, 7nm offers a substantial density improvement, performance improvement and power reduction from 10nm’.”

Full press release after the break.

Source: ARM

MWC 2016: MediaTek Announces Helio P20 True Octa-Core SoC

Subject: Processors, Mobile | February 22, 2016 - 11:11 AM |
Tagged: TSMC, SoC, octa-core, MWC 2016, MWC, mediatek, Mali-T880, LPDDR4X, Cortex-A53, big.little, arm

MediaTek might not be well-known in the United States, but the company has been working to expand from China, where it had a 40% market share as of June 2015, into the global market. While 2015 saw the introduction of the 8-core Helio P10 and the 10-core helio X20 SoCs, the company continues to expand their lineup, today announcing the Helio P20 SoC.

Helio_P20.jpg

There are a number of differences between the recent SoCs from MediaTek, beginning with the CPU core configuration. This new Helio P20 is a “True Octa-Core” design, but rather than a big.LITTLE configuration it’s using 8 identically-clocked ARM Cortex-A53 cores at 2.3 GHz. The previous Helio P10 used a similar CPU configuration, though clocks were limited to 2.0 GHz with that SoC. Conversely, the 10-core Helio X20 uses a tri-cluster configuration, with 2x ARM Cortex-A72 cores running at 2.5 GHz, along with a typical big.LITTLE arrangement (4x Cortex-A53 cores at 2.0 Ghz and 4x Cortex-A53 cores at 1.4 GHz).

Another change affecting MediaTek’s new SoC and he industry at large is the move to smaller process nodes. The Helio P10 was built on 28 nm HPM, and this new P20 moves to 16 nm FinFET. Just as with the Helio P10 and Helio X20 (a 20 nm part) this SoC is produced at TSMC using their 16FF+ (FinFET Plus) technology. This should provide up to “40% higher speed and 60% power saving” compared to the company’s previous 20 nm process found in the Helio X20, though of course real-world results will have to wait until handsets are available to test.

The Helio P20 also takes advantage of LPDDR4X, and is “the world’s first SoC to support low power double data rate random access memory” according to MediaTek. The company says this new memory provides “70 percent more bandwidth than the LPDDR3 and 50 percent power savings by lowering supply voltage to 0.6v”. Graphics are powered by ARM’s high-end Mali T880 GPU, clocked at an impressive 900 MHz. And all-important modem connectivity includes CAT6 LTE with 2x carrier aggregation for speeds of up to 300 Mbps down, 50 Mbps up. The Helio P20 also supports up to 4k/30 video decode with H.264/265 support, and the 12-bit dual camera ISP supports up to 24 MP sensors.

Specs from MediaTek:

  • Process: 16nm
  • Apps CPU: 8x Cortex-A53, up to 2.3GHz
  • Memory: Up to 2 x LPDDR4X 1600MHz (up to 6GB) + 1x LPDDR3 933Mhz (up to 4GB) + eMMC 5.1
  • Camera: Up to 24MP at 24FPS w/ZSD, 12bit Dual ISP, 3A HW engine, Bayer & Mono sensor support
  • Video Decode: Up to 4Kx2K 30fps H.264/265
  • Video Encode: Up to 4Kx2K 30fps H.264
  • Graphics: Mali T-880 MP2 900MHz
  • Display: FHD 1920x1080 60fps. 2x DSI for dual display
  • Modem: LTE FDD TDD R.11 Cat.6 with 2x20 CA. C2K SRLTE. L+W DSDS support
  • Connectivity: WiFiac/abgn (with MT6630). GPS/Glonass/Beidou/BT/FM.
  • Audio: 110db SNR & -95db THD

It’s interesting to see SoC makers experiment with less complex CPU designs after a generation of multi-cluster (big.LITTLE) SoCs, as even the current flagship Qualcomm SoC, the Snapdragon 820, has reverted to a straight quad-core design. The P20 is expected to be in shipping devices by the second half of 2016, and we will see how this configuration performs once some devices using this new P20 SoC are in the wild.

Full press release after the break:

Source: MediaTek