Xbox One Teardown - Microsoft still hates you

Subject: General Tech, Systems | November 22, 2013 - 08:02 PM |
Tagged: video, teardown, xbox one, APU, amd, xbox, xb1

Last week we brought a teardown of the new Sony PlayStation 4 (PS4) console and this week we do the same for Microsoft's new Xbox One console. 

In this video, which is a recording of our live stream that started last night at 12:30am EST, you'll see us unbox the Xbox One, turn it on, play with the new Kinect, take it apart and put it back together.  And this time we didn't even break anything - though removing the plastic clips on the Xbox One are particularly more annoying and time consuming than the screws on the PS4.

xboxmb.jpg

Though they are out of stock, Amazon.com appears to be getting additional Xbox One consoles in stock pretty regularly, so keep an eye out.

Author:
Subject: Systems
Manufacturer:

The 7 Year Console Refresh

Be sure you jump to the second page to see our recommendations for gaming PC builds that are inexpensive yet compete well with the capabilities and performance of the PlayStation 4 and Xbox One!!

The consoles are coming!  The consoles are coming!  Ok, that is not necessarily true.  One is already here and the second essentially is too.  This of course brings up the great debate between PCs and consoles.  The past has been interesting when it comes to console gaming, as often the consoles would be around a year ahead of PCs in terms of gaming power and prowess.  This is no longer the case with this generation of consoles.  Cutting edge is now considered mainstream when it comes to processing and graphics.  The real incentive to buy this generation of consoles is a lot harder to pin down as compared to years past.

ps4apu.jpg

The PS4 retails for $399 US and the upcoming Xbox One is $499.  The PS4’s price includes a single controller, while the Xbox’s package includes not just a controller, but also the next generation Kinect device.  These prices would be comparable to some low end PCs which include keyboard, mouse, and a monitor that could be purchased from large brick and mortar stores like Walmart and Best Buy.  Happily for most of us, we can build our machines to our own specifications and budgets.

As a directive from on high (the boss), we were given the task of building our own low-end gaming and productivity machines at a price as close to that of the consoles and explaining which solution would be superior at the price points given.  The goal was to get as close to $500 as possible and still have a machine that would be able to play most recent games at reasonable resolutions and quality levels.

Continue reading our comparison of PC vs. PS4 vs. Xbox One Hardware Comparison: Building a Competing Gaming PC!!

Sony Playstation 4 (PS4) Teardown and Disassembly

Subject: General Tech, Systems | November 15, 2013 - 02:42 PM |
Tagged: video, teardown, ps4, playstation 4, APU, amd

Last night Ken and I headed over the local Best Buy to pick up my preorder of the new Playstation 4.  What would any hardware geek immediately do with this hardware?  Obviously we take a screwdriver to it and take it apart.

In this video, which is a recording of our live stream that started last night at 12:30am EST, you'll see us unbox the PS4, turn it on, take it apart and put it back together.  And I only had to fix one piece with gaffers tape, so there's that.

ps4teardown.jpg

(We'll have a collection of high-resolution photos later today as well.)

Though they are out of stock, Amazon.com appears to be getting more PS4s in stock pretty regularly, so keep an eye out if you are interested in picking one up still.

Happy Friday!

AMD Releases 2014 Mobile APU Details: Beema and Mullins Cut TDPs

Subject: Processors | November 13, 2013 - 05:35 PM |
Tagged: Puma, Mullins, mobile, Jaguar, GCN, beema, apu13, APU, amd, 2014

AMD’s APU13 is all about APUs and their programming, but the hardware we have seen so far has been dominated by the upcoming Kaveri products for FM2+.  It seems that AMD has more up their sleeves for release this next year, and it has somewhat caught me off guard.  The Beema and Mullins based products are being announced today, but we do not have exact details on these products.  The codenames have been around for some time now, but interest has been minimal since they are evolutionary products based on Kabini and Temash APUs that have been available this year.  Little did I know that things would be far more interesting than that.

apu13_01.png

The basis for Beema and Mullins is the Puma core.  This is a highly optimized revision of Jaguar, and in some ways can be considered a new design.  All of the basics in terms of execution units, caches, and memory controllers are the same.  What AMD has done is go through the design with a fine toothed comb and make it far more efficient per clock than what we have seen previously.  This is still a 28 nm part, but the extra attention and love lavished upon it by AMD has resulted in a much more efficient system architecture for the CPU and GPU portions.

The parts will be offered in two and four core configurations.  Beema will span from 10W to 25W configurations.  Mullins will go all the way down to “2W SDP”.  SDP essentially means that while the chip can be theoretically rated higher, it will rarely go above that 2W envelope in the vast majority of situations.  These chips are expected to be around 2X more efficient per clock than the previous Jaguar based products.  This means that at similar clock speeds, Beema and Mullins will pull far less power than that previous gen.  It should also allow some higher clockspeeds at the top end 25W area.

apu13_02.png

These will be some of the first fanless quad cores that AMD will introduce for the tablet market.  Previously we have seen tablets utilize the cut down versions of Temash to hit power targets, but with this redesign it is entirely possible to utilize the fully enabled quad core Mullins.  AMD has not given us specific speeds for these products, but we can guess that they will be around what we see currently, but the chip will just have a lower TDP rating.

AMD is introducing their new security platform based on the ARM Trustzone.  Essentially a small ARM Cortex A5 is integrated in the design and handles the security aspects of this feature.  We were not briefed on how this achieves security, but the slide below gives some of the bullet points of the technology.

apu13_03.png

Since the pure-play foundries will not have a workable 20 nm process for AMD to jump to in a timely manner, AMD had no other choice but to really optimize the Jaguar core to make it more competitive with products from Intel and the ARM partners.  At 28 nm the ARM ecosystem has a power advantage over AMD, while at 22 nm Intel offers similar performance to AMD but with greater power efficiency.

This is a necessary update for AMD as the competition has certainly not slowed down.  AMD is more constrained obviously by the lack of a next-generation process node available for 1H 2014, so a redesign of this magnitude was needed.  The performance per watt metric is very important here, as it promises longer battery life without giving up the performance people received from the previous Kabini/Temash family of APUs.  This design work could be carried over to the next generation of APUs using 20 nm and below, which hopefully will keep AMD competitive with the rest of the market.  Beema and Mullins are interesting looking products that will be shown off at CES 2014.

apu13_04.png

Source: AMD

Video: Battlefield 4 Running on AMD A10 Kaveri APU and Image Decoder HSA Acceleration

Subject: Graphics Cards, Processors | November 12, 2013 - 06:10 PM |
Tagged: amd, Kaveri, APU, video, hsa

Yesterday at the AMD APU13 developer conference, the company showed off the upcoming Kaveri APU running Battlefield 4 completely on the integrated graphics.  I was able to push the AMD guys along and get a little more personal demo to share with our readers.  The Kaveri APU had some of its details revealed this week:

  • Quad-core Steamroller x86
  • 512 Stream Processor GPU
  • 856 GFLOPS of theoretical performance
  • 3.7 GHz CPU clock speed, 720 MHz GPU clock speed

AMD wanted to be sure we pointed out in this video that the estimate clock speeds for FLOP performance may not be what the demo system was run at (likely a bit lower).  Also, the version of Battlefield 4 here is the standard retail version and with further improvements from the driver team as the upcoming Mantle API implementation will likely introduce even more performance for the APU.

The game was running at 1920x1080 with MOSTLY medium quality settings (lighting set to low) but the results still looked damn impressive and the frame rates were silky and smooth.  Considering this is running on a desktop with integrated processor graphics, the game play experience is simply unmatched.  

Memory in the system was running at 2133 MHz.

The second demo looks at the image decoding acceleration that AMD is going to enable with Kaveri APUs upon release with a driver.  Essentially, as the demonstration shows in the video, AMD is overwriting the integrated Windows JPG decompression algorithm with a new one that utilizes HSA to accelerate on both the x86 and SIMD (GPU) portions of the silicon.  For the most strenuous demo that used 22 MP images saw a 100% increase in performance compared to the Kaveri CPU cores alone.

Author:
Subject: Processors
Manufacturer: AMD

More Details from Lisa Su

The executives at AMD like to break their own NDAs.  Then again, they are the ones typically setting these NDA dates, so it isn’t a big deal.  It is no secret that Kaveri has been in the pipeline for some time.  We knew a lot of the basic details of the product, but there were certainly things that were missing.  Lisu Su went up onstage and shared a few new details with us.

kaveri.jpg

Kaveri will be made up of 4 “Steamroller” cores, which are enhanced versions of the previous Bulldozer/Trinity/Vishera families of products.  Nearly everything in the processor is doubled.  It now has dual decode, more cache, larger TLBs, and a host of other smaller features that all add up to greater single thread performance and better multi-threaded handling and performance.   Integer performance will be improved, and the FPU/MMX/SSE unit now features 2 x 128 bit FMAC units which can “fuse” and support AVX 256.

However, there was no mention of the fabled 6 core Kaveri.  At this time, it is unlikely that particular product will be launched anytime soon. 

Click to read the entire article here!

Author:
Manufacturer: AMD

Earth Shattering?

AMD is up to some interesting things.  Today at AMD’s tech day, we discovered a veritable cornucopia of information.  Some of it was pretty interesting (audio), some was discussed ad-naseum (audio, audio, and more audio), and one thing in particular was quite shocking.  Mantle was the final, big subject that AMD was willing to discuss.  Many assumed that the R9 290X would be the primary focus of this talk, but in fact it very much was an aside that was not discussed at any length.  AMD basically said, “Yes, the card exists, and it has some new features that we are not going to really go over at this time.”  Mantle, as a technology, is at the same time a logical step as well as an unforeseen one.  So what all does Mantle mean for users?

mantle_diag_01.jpg

Looking back through the mists of time, when dinosaurs roamed the earth, the individual 3D chip makers all implemented low level APIs that allowed programmers to get closer to the silicon than what other APIs such as Direct3D and OpenGL would allow.  This was a very efficient way of doing things in terms of graphics performance.  It was an inefficient way to do things for a developer writing code for multiple APIs.  Microsoft and the Kronos Group had solutions with Direct3D and OpenGL that allowed these programmers to develop for these high level APIs very simply (comparatively so).  The developers could write code that would run D3D/OpenGL, and the graphics chip manufacturers would write drivers that would interface with Direct3D/OpenGL, which then go through a hardware abstraction layer to communicate with the hardware.  The onus was then on the graphics people to create solid, high performance drivers that would work well with DirectX or OpenGL, so the game developer would not have to code directly for a multitude of current and older graphics cards.

Read the entire article here.

Author:
Subject: Editorial
Manufacturer: AMD

Retiring the Workhorses

There is an inevitable shift coming.  Honestly, this has been quite obvious for some time, but it has just taken AMD a bit longer to get here than many have expected.  Some years back we saw AMD release their new motto, “The Future is Fusion”.  While many thought it somewhat interesting and trite, it actually foreshadowed the massive shift from monolithic CPU cores to their APUs.  Right now AMD’s APUs are doing “ok” in desktops and are gaining traction in mobile applications.  What most people do not realize is that AMD will be going all APU all the time in the very near future.

AMD_Fusion.jpg

We can look over the past few years and see that AMD has been headed in this direction for some time, but they simply have not had all the materials in place to make this dramatic shift.  To get a better understanding of where AMD is heading, how they plan to address multiple markets, and what kind of pressures they are under, we have to look at the two major non-APU markets that AMD is currently hanging onto by a thread.  In some ways, timing has been against AMD, not to mention available process technologies.

Click here to read the entire editorial!

 

IFA 2013: ASUS X102BA Ultraportable Powered by AMD Temash A4-1200

Subject: Processors, Mobile | September 4, 2013 - 11:32 AM |
Tagged: Temash, ifa 2013, asus, APU, amd, a4-1200

The hits just keep coming from ASUS this morning with the announcement of a new ultraportable notebook with the ambiguous name of X102BA. Though the name might not be catchy the device itself is more interesting because of the hardware that is powering it, specifically an AMD Temash A4-1200 APU. 

x1021.jpg

This marks one of the few highly visible systems being powered by the AMD Temash architecture and I will be very curious to its reception.  The APU itself is a dual-core part that runs at 1.0 GHz with integrated Radeon HD 8180 graphics that is more than enough for a modest Windows 8 working environment.  There is a quad-core variant of Temash available but ASUS decided to go with the dual-core option.  If you need more information on the new architecture that AMD created for Kabini and Temash (based on Jaguar CPU cores and GCN GPU cores) then you should see our coverage from their announcement back in May.

The rest of the specifications are a bit more tame, including a 1366x768 10.1-in 10-point multi-touch screen, USB 3.0, 802.11n WIFI, bundled Microsoft Office Home and Student 2013 and a touted 2-second resume time. 

x1022.jpg

Even though the battery life is only listed at 5 hours, the 2.4 pound weight makes the X102BA a very portable machine.  Plus you can get it in Hot Pink!

Click here to see the full ASUS X102BA press release!!

Source: ASUS

AMD Gains GPU Market Share From Last Quarter

Subject: General Tech, Graphics Cards, Processors | August 16, 2013 - 04:00 PM |
Tagged: nvidia, Intel, APU, amd

Despite a slight decline in PC sales compared to last quarter, graphics processors are on the rise. Jon Peddie Research attributes the heightened interest in graphics, with a decline in systems, to a trend towards multiple GPUs in a system. Crossfire and SLI, according to the report, are not driving this drift but they are relevant. More importantly, consumers are adding discrete graphics to systems with integrated solutions.

amd-new2.png

AMD has experienced an increase in shipments of 47% for laptop APUs. Desktop heterogeneous processors declined but, in all, shipments increased 11%. Intel, likewise, saw an increase albeit just 6%. NVIDIA declined 8%. AMD now enjoys a 5.8% lead in total market share over NVIDIA.

Many PCs have access to multiple graphics processors simultaneously. With an increase of available GPUs, software developers might take the plunge into fully supporting heterogeneous architectures. You could imagine a game which offloads physics or AI pathfinding to secondary graphics. Sure, the increased heat would slightly limit the turbo-performance of the CPU, but the increased parallel performance should overtake that decreased serial performance for a sensible developer.

JPR claims an average of nearly 1.4 GPUs available per system.

The increased laptop heterogeneous processors is a major win for AMD. Still, I wonder how much Never Settle played in to users dropping discrete graphics into machines which would otherwise have integrated (chipset or processor) graphics. The discrete graphics market has declined and yet somehow AMD got a boost from double-attach or replaced graphics.

The report only discusses consumer x86 tablets, desktops, laptops, and some hybrid between the previous three categories. Other processor architectures or x86 servers are not covered.

Source: JPR