ChromeOS Gets Android "App Runtime for Chrome (Beta)"

Subject: General Tech, Systems, Mobile | September 13, 2014 - 02:52 PM |
Tagged: google, chrome os, Android

To some extent...

This is not the entire Google Play Store; in fact, it is just four Android apps at launch: Duolingo, Evernote, Sight Words, and Vine. According to a Google spokesperson, via Ars Technica, the company built an Android platform on top of Native Client, which is their way of sandboxing (a subset of) native code for use in applications which require strict security (such as a web browser). Android apps can then see and use those platform-dependent Android APIs, but be kept at two arms-lengths away from the host system.

chrome-os-android.png

From the app's standpoint, code will not need to be changed or ported. Of course, this is sound in theory, but little bugs can surface in actual practice. In fact, Flipboard was demonstrated at Google I/O under this initiative but is curiously absent from launch. To me, it seems like a few bugs need to be resolved before it is deemed compatible (it is dubbed "Beta" after all). Another possibility is that the app was not yet optimized for a Chromebook's user experience. Claiming either would be pure speculation, so who knows?

Android apps using App Runtime for Chrome (Beta) are available now at the Chrome Web Store.

Source: Google

IDF 2014: Intel and Google Announce Reference Design Program, Guaranteed 2 Week AOSP Updates

Subject: Mobile | September 9, 2014 - 10:00 AM |
Tagged: tablet, reference design program, Intel, idf 2014, idf, google, aosp, Android

During today's keynote of the Intel Developer Forum, Google and Intel jointly announced a new program aimed to ease the burden of Android deployment and speed up the operating system update adoption rates that have often plagued the ecosystem.

In today's Android market, whether we are talking about x86 or ARM-based SoC designs, the process to release a point update to the operating system is quite complicated. ODMs have to build unique operating system images for each build and each individual SKU has to pass Google Media Services (GMS). This can be cumbersome and time consuming, slowing down or preventing operating system updates from ever making it to the consumer.

androidref.jpg

With the Intel Reference Design Program, the company will provide it's partners with a single binary that allows them to choose from a pre-qualified set of components or a complete bill of materials specification. Obviously this BOM will include Intel x86 processors like Bay Trail but it should help speed up the development time of new hardware platforms. Even better, OEMs and ODMs won't have to worry about dealing with the process of passing GMS certification leaving the hardware vendor to simply release the hardware to the market.

IMG_0182.JPG

But, an even bigger step forward, is Intel's commitment on the software side. Everyone knows how fragmented the Android OS market with just 20% of the hardware on the Play Store running Android KitKat. For devices built on the Reference Design Program, Intel is going to guarantee software updates within 2 weeks of AOSP (Android Open Source Project) updates. And, that update support will be given for two years after the release of the launch of the device.

AOSP-logo.jpg

This combination of hardware and software support from Intel to its hardware ODMs should help ignite some innovation and sales in the x86 Android market. There aren't any partners to announce support for this Reference Design Program but hopefully we'll hear about some before the end of IDF. It will be very interesting to see what ARM (and its partners) respond with. There are plenty of roadblocks holding back the quick uptake of x86 Android tablets but those companies would be blind to ignore the weight that Intel can shift when the want to.

MINIX Neo Z64 Is x86-64 and $129

Subject: General Tech, Systems | September 3, 2014 - 04:23 PM |
Tagged: fanless, htpc, windows, Android

Because fanless and cheap PCs are awesome, MINIX is launching the Neo Z64. Priced at $129 USD, it will contain an Intel Atom Z3635F SoC with 2GB of DDR3L and 32GB of eMMC internal storage. The device will ship loaded with Android 4.4.4 (KitKat) but is compatible with Windows 8.1, if you have a license for it.

minix-neo-z64.jpg

Externally, the device features a microSD card slot (maximum size not specified), one 10/100Mbps Ethernet port, two USB 2.0 ports, an IR receiver (with remote), and HDMI 1.4. Note that HDMI is the only audio outputs on this device, which could be tricky if you want to run it as something other than a home theater PC (if you do not have a USB sound card that is compatible with your chosen OS). Lastly, it also has 802.11n and Bluetooth 4.0 wireless support.

This is still a significant price premium over some other devices, like a Roku, but could be useful for some. The lack of any SteamOS mention is a bit disconcerting, given that the free OS could be applied to turn the device into an In-Home Streaming target (or host of simple, Linux-compatible games, like Super Meat Boy). Hopefully, future products will consider Valve's home theater platform.

The MINIX Neo Z64 will be available in October for $129.

Source: FanlessTech

Lenovo Outs 8-Inch $199 Intel-Powered TAB S8 Android Tablet

Subject: Mobile | September 3, 2014 - 12:02 AM |
Tagged: tablet, tab s8, Lenovo, ifa 2014, ifa, Bay Trail, Atom Z3775, Android

Lenovo launched the TAB S8 at IFA in Berlin today, making it the company's first Intel-powered 8-inch tablet running Google's Android operating system. The TAB S8 packs a decent amount of hardware into a 7.9mm thick and 299 gram package that will be available later this month starting at $199.

The TAB S8 features an 8-inch "Infinity Glass" 1920 x 1200 IPS display, two front facing Dolby Audio speakers, a 1.6 megapixel webcam, and an 8MP rear camera. Lenovo will offer the TAB S8 in white, black, yellow, and blue.

Lenovo Tab S8 Intel Bay Trail Android Tablet.jpg

Internally, the TAB S8 uses an Intel Atom Z3775 "Bay Trail" SoC clocked at up to 1.83 GHz, 16GB of eMMC storage, and 2GB DDR3 memory. The tablet runs Android 4.4 and will support Wi-Fi, Bluetooth, and (optionally) LTE cellular radios.

Exact SKUs and specifications have not yet been announced, but the base 16GB model will be available in September for $199. For the price, the TAB S8 looks to be a good deal, with hardware that is very competitive to other budget Android tablets!

Also read: Video Perspective: Lenovo Yoga Tablet 8 and Yoga Tablet 10

Source: Lenovo

Rooting your Android in the name of security

Subject: General Tech | August 22, 2014 - 10:30 AM |
Tagged: byod, security, Android

In the new BYOD corporate crapshoot Android devices are frequently connecting to secure resources which raises security concerns for many IT workers.  The OS is not as secure as many would like it to be; good enough for home use but not for those who truly want to keep their data secure.  The majority of the exploits come from insecure apps as opposed to an inherent problem with the OS which has lead to a group proposing an Android Security Module Framework.  Root the phone once to add these to Android and enable the ability to restrict the capability of apps to share unnecessarily while not preventing the apps from running.  The example offered to The Register was the ability to stop Whatsapp from uploading contact information without preventing the app from functioning.  This could also allow you to configure a phone in a way similar to Blackberry's Balance feature, segregating work data from personal.

images.jpg

"An international group of researchers believes Android needs more extensible security, and is offering up a framework they hope either Google or mobe-makers will take for a spin."

Here is some more Tech News from around the web:

Tech Talk

Source: The Register

NVIDIA Reveals 64-bit Denver CPU Core Details, Headed to New Tegra K1 Powered Devices Later This Year

Subject: Processors | August 11, 2014 - 10:06 PM |
Tagged: tegra k1, project denver, nvidia, Denver, ARMv8, arm, Android, 64-bit

During GTC 2014 NVIDIA launched the Tegra K1, a new mobile SoC that contains a powerful Kepler-based GPU. Initial processors (and the resultant design wins such as the Acer Chromebook 13 and Xiaomi Mi Pad) utilized four ARM Cortex-A15 cores for the CPU side of things, but later this year NVIDIA is deploying a variant of the Tegra K1 SoC that switches out the four A15 cores for two custom (NVIDIA developed) Denver CPU cores.

Today at the Hot Chips conference, NVIDIA revealed most of the juicy details on those new custom cores announced in January which will be used in devices later this year.

The custom 64-bit Denver CPU cores use a 7-way superscalar design and run a custom instruction set. Denver is a wide but in-order architecture that allows up to seven operations per clock cycle. NVIDIA is using a custom ISA and on-the-fly binary translation to convert ARMv8 instructions to microcode before execution. A software layer and 128MB cache enhance the Dynamic Code Optimization technology by allowing the processor to examine and optimize the ARM code, convert it to the custom instruction set, and further cache the converted microcode of frequently used applications in a cache (which can be bypassed for infrequently processed code). Using the wider execution engine and Dynamic Code Optimization (which is transparent to ARM developers and does not require updated applications), NVIDIA touts the dual Denver core Tegra K1 as being at least as powerful as the quad and octo-core packing competition.

Further, NVIDIA has claimed at at peak throughput (and in specific situations where application code and DCO can take full advantage of the 7-way execution engine) the Denver-based mobile SoC handily outpaces Intel’s Bay Trail, Apple’s A7 Cyclone, and Qualcomm’s Krait 400 CPU cores. In the results of a synthetic benchmark test provided to The Tech Report, the Denver cores were even challenging Intel’s Haswell-based Celeron 2955U processor. Keeping in mind that these are NVIDIA-provided numbers and likely the best results one can expect, Denver is still quite a bit more capable than existing cores. (Note that the Haswell chips would likely pull much farther ahead when presented with applications that cannot be easily executed in-order with limited instruction parallelism).

NVIDIA Denver CPU Core 64bit ARMv8 Tegra K1.png

NVIDIA is ratcheting up mobile CPU performance with its Denver cores, but it is also aiming for an efficient chip and has implemented several power saving tweaks. Beyond the decision to go with an in-order execution engine (with DCO hopefully mostly making up for that), the beefy Denver cores reportedly feature low latency power state transitions (e.g. between active and idle states), power gating, dynamic voltage, and dynamic clock scaling. The company claims that “Denver's performance will rival some mainstream PC-class CPUs at significantly reduced power consumption.” In real terms this should mean that the two Denver cores in place of the quad core A15 design in the Tegra K1 should not result in significantly lower battery life. The two K1 variants are said to be pin compatible such that OEMs and developers can easily bring upgraded models to market with the faster Denver cores.

NVIDIA Denver CPU cores in Tegra K1.png

For those curious, In the Tegra K1, the two Denver cores (clocked at up to 2.5GHz) share a 16-way L2 cache and each have 128KB instruction and 64KB data L1 caches to themselves. The 128MB Dynamic Code Optimization cache is held in system memory.

Denver is the first (custom) 64-bit ARM processor for Android (with Apple’s A7 being the first 64-bit smartphone chip), and NVIDIA is working on supporting the next generation Android OS known as Android L.

The dual Denver core Tegra K1 is coming later this year and I am excited to see how it performs. The current K1 chip already has a powerful fully CUDA compliant Kepler-based GPU which has enabled awesome projects such as computer vision and even prototype self-driving cars. With the new Kepler GPU and Denver CPU pairing, I’m looking forward to seeing how NVIDIA’s latest chip is put to work and the kinds of devices it enables.

Are you excited for the new Tegra K1 SoC with NVIDIA’s first fully custom cores?

Source: NVIDIA
Author:
Subject: Mobile
Manufacturer: NVIDIA

A Tablet and Controller Worth Using

An interesting thing happened a couple of weeks back, while I was standing on stage at our annual PC Perspective Hardware Workshop during Quakecon in Dallas, TX. When NVIDIA offered up a SHIELD (now called the SHIELD Portable) for raffle, the audience cheered. And not just a little bit, but more than they did for nearly any other hardware offered up during the show. That included motherboards, graphics card, monitors, even complete systems. It kind of took me aback - NVIDIA SHIELD was a popular brand, a name that was recognized, and apparently, a product that people wanted to own. You might not have guessed that based on the sales numbers that SHIELD has put forward though. Even though it appeared to have a significant mind share, market share was something that was lacking.

Today though, NVIDIA prepares the second product in the SHIELD lineup, the SHIELD Tablet, a device the company hopes improves on the idea of SHIELD to encourage other users to sign on. It's a tablet (not a tablet with a controller attached), it has a more powerful SoC that can utilize different APIs for unique games, it can be more easily used in a 10-ft console mode and the SHIELD specific features like Game Stream are included and enhanced.

The question of course though is easy to put forward: should you buy one? Let's explore.

The NVIDIA SHIELD Tablet

At first glance, the NVIDIA SHIELD Tablet looks like a tablet. That actually isn't a negative selling point though, as the SHIELD Tablet can and does act like a high end tablet in nearly every way: performance, function, looks. We originally went over the entirety of the tablet's specifications in our first preview last week but much of it bears repeating for this review.

21.jpg

The SHIELD Tablet is built around the NVIDIA Tegra K1 SoC, the first mobile silicon to implement the Kepler graphics architecture. That feature alone makes this tablet impressive because it offers graphics performance not seen in a form factor like this before. CPU performance is also improved over the Tegra 4 processor, but the graphics portion of the die sees the largest performance jump easily.

IMG_0417.JPG

A 1920x1200 resolution 7.9-in IPS screen faces the user and brings the option of full 1080p content lacking with the first SHIELD portable. The screen is bright and crisp, easily viewable in bring lighting for gaming or use in lots of environments. Though the Xiaomi Mi Pad 7.9 had a 2048x1536 resolution screen, the form factor of the SHIELD Tablet is much more in line with what NVIDIA built with the Tegra Note 7.

Continue reading our review of the NVIDIA SHIELD Tablet and Controller!!

Author:
Subject: Mobile
Manufacturer: Xiaomi

The First with the Tegra K1 Processor

Back in May a Chinese company announced what was then the first and only product based on NVIDIA’s Tegra K1 SoC, the Xiaomi Mi Pad 7.9. Since then we have had a couple of other products hit our news wire including Google’s own Project Tango development tablet. But the Xiaomi is the first to actually be released, selling through 50,000 units in four minutes according to some reports. I happened to find one on Aliexpress.com, a Chinese sell-through website, and after a few short days the DHL deliveryman dropped the Tegra K1 powered machine off at my door.

If you are like me, the Xiaomi name was a new one. A privately owned company from Beijing and has become one of China’s largest electronics companies, jumping into the smartphone market in 2011. The Mi Pad marks the company’s first attempt at a tablet device, and the partnership with NVIDIA to be an early seller of the Tegra K1 seems to be making waves.

02.jpg

The Tegra K1 Processor

The Tegra K1 SoC was first revealed at CES in January of 2014, and with it came a heavy burden of expectation from NVIDIA directly, as well as from investors and the media. The first SoC from the Tegra family to have a GPU built from the ground up by NVIDIA engineers, the Tegra K1 gets its name from the Kepler family of GPUs. It also happens to get the base of its architecture there as well.

The processor of the Tegra K1 look very familiar and include four ARM Cortex-A15 “r3” cores and 2MB of L2 cache with a fifth A15 core used for lower power situations.  This 4+1 design is the same that was introduced with the Tegra 4 processor last year and allows NVIDIA to implement a style of “big.LITTLE” design that is unique.  Some slight modifications to the cores are included with Tegra K1 that improve performance and efficiency, but not by much – the main CPU is very similar to the Tegra 4.

The focus on the Tegra K1 will be on the GPU, now powered by NVIDIA’s Kepler architecture.  The K1 features 192 CUDA cores with a very similar design to a single SMX on today’s GeForce GTX 700-series graphics cards.  This includes OpenGL ES3.0 support but much more importantly, OpenGL 4.4 and DirectX 11 integration.  The ambition of bringing modern, quality PC gaming to mobile devices is going to be closer than you ever thought possible with this product and the demos I have seen running on reference designs are enough to leave your jaw on the floor.

03.jpg

By far the most impressive part of Tegra K1 is the implementation of a full Kepler SMX onto a chip that will be running well under 2 watts.  While it has been the plan from NVIDIA to merge the primary GPU architectures between mobile and discrete, this choice did not come without some risk.  When the company was building the first Tegra part it basically had to make a hedge on where the world of mobile technology would be in 2015.  NVIDIA might have continued to evolve and change the initial GPU IP that was used in Tegra 1, adding feature support and increasing the required die area to improve overall GPU performance, but instead they opted to position a “merge point” with Kepler in 2014.  The team at NVIDIA saw that they were within reach of the discontinuity point we are seeing today with Tegra K1, but in truth they had to suffer through the first iterations of Tegra GPU designs that they knew were inferior to the design coming with Kepler.

You can read much more on the technical detail of the Tegra K1 SoC by heading over to our launch article that goes into the updated CPU design, as well as giving you all the gore behind the Kepler integration.

By far the most interesting aspect of the Xiaomi Mi Pad 7.9 tablet is the decsion to integrate the Tegra K1 processor. Performance and battery life comparisons with other 7 to 8-in tablets will likely not impact how it sells in China, but the results may mean the world to NVIDIA as they implore other vendors to integrate the SoC.

Continue reading our review of the Xiaomi Mi Pad 7.9 tablet powered by Tegra K1!!

Google Play Store Could Be Redesigned (Maybe Even Soon)

Subject: General Tech, Mobile | July 16, 2014 - 01:11 AM |
Tagged: google, google play, Android, android l

If you have looked at Google's recent design ideologies, first announced at Google I/O 2014, you will see them revolve around skeuomorphism in its most basic sense. By that, I do not mean that they want to make it look like a folder, a metal slab, or a radio button. Their concept is that objects should look like physical objects which behave with physical accuracy, even though they are just simulations of light.

Android-AndroidPolice-nexusae0_wm_11.png

Image Credit: Android Police (and their source)

Basically, rather than having a panel with a toolbar, buttons, and columns, have a background with a page on it. Interface elements which are affected by that panel are on it, while more global actions are off of it. According to Android Police, who make clear that they do not have leaked builds and readers should not believe anything until/unless it ships, the Google Play Store will be redesigned with this consistent, albeit broad, design metric.

Basically, if you are navigation bar, pack your desk and get out.

If true, when will these land? Anyone's guess. One speculation is that it will be timed with the release of Android "L" in Autumn. Their expectation, however, is that it will be one of many updates Google will make across their products in a rolling pattern. Either way, I think it looks good... albeit similar to many modern websites.

Google I/O 2014: Android Extension Pack Announced

Subject: General Tech, Graphics Cards, Mobile, Shows and Expos | July 7, 2014 - 01:06 AM |
Tagged: tegra k1, OpenGL ES, opengl, Khronos, google io, google, android extension pack, Android

Sure, this is a little late. Honestly, when I first heard the announcement, I did not see much news in it. The slide from the keynote (below) showed four points: Tesselation, Geometry Shaders, Computer [sic] Shaders, and ASTC Texture Compression. Honestly, I thought tesselation and geometry shaders were part of the OpenGL ES 3.1 spec, like compute shaders. This led to my immediate reaction: "Oh cool. They implemented OpenGL ES 3.1. Nice. Not worth a news post."

google-android-opengl-es-extensions.jpg

Image Credit: Blogogist

Apparently, they were not part of the ES 3.1 spec (although compute shaders are). My mistake. It turns out that Google is cooking their their own vendor-specific extensions. This is quite interesting, as it adds functionality to the API without the developer needing to target a specific GPU vendor (INTEL, NV, ATI, AMD), waiting for approval from the Architecture Review Board (ARB), or using multi-vendor extensions (EXT). In other words, it sounds like developers can target Google's vendor without knowing the actual hardware.

Hiding the GPU vendor from the developer is not the only reason for Google to host their own vendor extension. The added features are mostly from full OpenGL. This makes sense, because it was announced with NVIDIA and their Tegra K1, Kepler-based SoC. Full OpenGL compatibility was NVIDIA's selling point for the K1, due to its heritage as a desktop GPU. But, instead of requiring apps to be programmed with full OpenGL in mind, Google's extension pushes it to OpenGL ES 3.1. If the developer wants to dip their toe into OpenGL, then they could add a few Android Extension Pack features to their existing ES engine.

Epic Games' Unreal Engine 4 "Rivalry" Demo from Google I/O 2014.

The last feature, ASTC Texture Compression, was an interesting one. Apparently the Khronos Group, owners of OpenGL, were looking for a new generation of texture compression technologies. NVIDIA suggested their ZIL technology. ARM and AMD also proposed "Adaptive Scalable Texture Compression". ARM and AMD won, although the Khronos Group stated that the collaboration between ARM and NVIDIA made both proposals better than either in isolation.

Android Extension Pack is set to launch with "Android L". The next release of Android is not currently associated with a snack food. If I was their marketer, I would block out the next three versions as 5.x, and name them (L)emon, then (M)eringue, and finally (P)ie.

Would I do anything with the two skipped letters before pie? (N)(O).