IDF 2014: Skylake Silicon Up and Running for 2H 2015 Release

Subject: Shows and Expos | September 9, 2014 - 02:27 PM |
Tagged: Skylake, Intel, idf 2014, idf, 14nm

2015 is shaping up to be an interesting year for Intel's consumer processor product lines. We are still expected to see Broadwell make some kind of debut in a socketed form in addition to the mobile releases trickling out beginning this holiday, but it looks like we will also get our first taste of Skylake late next year.

skylake1.jpg

Skylake is Intel's next microarchitecture and will be built on the same 14nm process technology currently shipping with Broadwell-Y. Intel stated that it expects to see dramatic improvements in all areas of measurement including performance, power consumption and silicon efficiency.

On stage the company demoed Skylake running the 3DMark Fire Strike benchmark though without providing any kind of performance result (obviously). That graphics demo was running on an engineering development board and platform and though it looked incredibly good from where we were sitting, we can't make any guess as to the performance quite yet.

skylake3.jpg

Intel then surprised us by bringing a notebook out from behind the monitor showing Skylake up and running in a mobile form factor decoding and playing back 4K video. Once again, the demo was smooth and impressive though you expect no more from an overly rehearsed keynote.

skylake2.jpg

Intel concluded that it was "excited about the health of Skylake" and that they should be in mass production in the first quarter of 2015 with samples going out to customers. Looking even further down the rabbit hole the company believes they have a "great line of sight to 10nm and beyond." 

Even though details were sparse, it is good news for Intel that they would be willing to show Skylake so early and yet I can't help but worry about a potentially shorter-than-expected life span for Broadwell in the desktop space. Mobile users will find the increased emphasis on power efficiency a big win for thin and light notebooks but enthusiast are still on the look out for a new product to really drive performance up in the mainstream.

ASUS ZenBook UX305 Will Be Based on Core M (Broadwell)

Subject: General Tech, Systems, Mobile | September 8, 2014 - 10:49 PM |
Tagged: Intel, asus, core m, broadwell-y, Broadwell, 14nm, ultrabook

This will probably be the first of many notebooks announced that are based on Core M. These processors, which would otherwise be called Broadwell-Y, are the "flagship" CPUs to be created on Intel's 14nm, tri-gate fabrication process. The ASUS ZenBook UX305 is a 13-inch clamshell notebook with one of three displays: 1920x1200 IPS, 1920x1200 multi-touch IPS, or 3200x1800 multi-touch IPS. That is a lot of pixels to pack into such a small display.

asus-zenbook-ux305-twinhero.jpg

While the specific processor(s) are not listed, it will use Intel HD Graphics 5300 for its GPU. This is new with Broadwell, albeit their lowest tier. Then again, last generation's 5000 and 5100 were up in the 700-800 GFLOP range, which is fairly high (around medium quality settings for Battlefield 4 at 720p). Discrete graphics will not be an option. It will come with a choice between 4GB and 8GB of RAM. Customers can also choose between a 128GB SSD, or a 256GB SSD. It has a 45Wh battery.

Numerous connectivity options are available: 802.11 a, g, n, or ac; Bluetooth 4.0; three USB 3.0 ports; Micro HDMI (out); a 3.5mm headphone/mic combo jack; and a microSD card slot. It has a single, front-facing, 720p webcam.

In short, it is an Ultrabook. Pricing and availability are currently unannounced.

Source: ASUS

Intel Announces Core M Processor Lineup Using Broadwell-Y

Subject: Processors | September 5, 2014 - 09:11 AM |
Tagged: Intel, core m, broadwell-y, Broadwell, 14nm

In a somewhat surprising fashion, Intel has decided to announce (again) the Core M processor family that will be shipping this fall and winter using the Broadwell-Y SoC. I was able to visit Portland and talk with the process technology and architecture teams back in early August so much of the news coming out today about the improvements of 14nm tri-gate transistors, the smaller package size of Broadwell-Y and the goals for thinner, fanless designs is going to be a repeat for frequent PC Perspective readers. (You can see that original story, Intel Core M Processor: Broadwell Architecture and 14nm Process Reveal.)

What is new information today are specifics on the clock speeds and SKU offerings.

  5Y70 5Y10a 5Y10
Cores/Threads 2/4 2/4 2/4
Base Freq 1.10 GHz 800 MHz 800 MHz
Max Single Core Turbo 2.6 GHz 2.0 GHz 2.0 GHz
Max Dual Core Turbo 2.6 GHz 2.0 GHz 2.0 GHz
Max Quad Core Turbo N/A N/A N/A
Graphics Intel HD Graphics 5300 Intel HD Graphics 5300 Intel HD Graphics 5300
Graphics Base/Max Freq 100/850 MHz 100/800 MHz 100/800 MHz
LPDDR3L Memory Speed 1600 MHz 1600 MHz 1600 MHz
L3 Cache 4MB 4MB 4MB
TDP 4.5 watts 4.5 watts 4.5 watts
Intel vPro Y N N
Intel TXT Y N N
Intel VT-d Y Y Y
Intel VT-x Y Y Y
AES-NI Y Y Y
1K Pricing $281 $281 $281

Intel has planned three options, all with the same $281 pricing, though obviously based on volume and other deals with OEMs, these are likely to shift. The Core M 5Y70 is the highest performance part with a base clock speed of 1.10 GHz that can scale up to 2.6 GHz with one or both cores active. The other two parts launching today both feature 800 MHz base clocks and 2.0 GHz maximum Turbo speeds.

With that scaling information, and the wide range that the Intel HD Graphics 5300 can hit (100-800 MHz) Intel is doubling down on the benefits of fast and reliable Turbo Boost technology to give you high frequencies only when you need it most. This conserves power consumption the vast majority of time and allows Intel's partners to build fanless designs that are incredibly thin.

The 5Y10 and 5Y10a differ only in that the non-A variant has a configurable TDP down the 4.0 watts should the vendor opt for that.

bwdy1.jpg

Intel is also giving us a more detailed look at the Broadwell-Y PCH that includes a lot of I/O for such a small platform. Two channels of USB 3.0 can support four total ports and as many as four SATA 6G storage units can be integrated as well. These Y-SKUs look like they have 12 lanes of PCIe 2.0 available to them should a notebook vendor decide to use PCIe storage solutions (like M.2) rather than relying purely on SATA. 

bwdy2.jpg

At least one partner has already announced a Core M product: the Lenovo ThinkPad Helix. It appears to be an amazing 11.6-in convertible tablet design. Without a doubt we'll encouter numerous other designs at the Intel Developer Forum that starts next Tuesday.

Source: Intel

Podcast #313 - New Kaveri APUs, ASUS ROG Swift G-Sync Monitor, Intel Core M Processors and more!

Subject: General Tech | August 14, 2014 - 12:30 PM |
Tagged: video, ssd, ROG Swift, ROG, podcast, ocz, nvidia, Kaveri, Intel, g-sync, FMS 2014, crossblade ranger, core m, Broadwell, asus, ARC 100, amd, A6-7400K, A10-7800, 14nm

PC Perspective Podcast #313 - 08/14/2014

Join us this week as we discuss new Kaveri APUs, ASUS ROG Swift G-Sync Monitor, Intel Core M Processors and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

  • iTunes - Subscribe to the podcast directly through the iTunes Store
  • RSS - Subscribe through your regular RSS reader
  • MP3 - Direct download link to the MP3 file

Hosts: Ryan Shrout, Jeremy Hellstrom, Josh Walrath, and Allyn Malventano

Program length: 1:41:24
 

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

 

Author:
Subject: Processors
Manufacturer: Intel

Coming in 2014: Intel Core M

The era of Broadwell begins in late 2014 and based on what Intel has disclosed to us today, the processor architecture appears to be impressive in nearly every aspect. Coming off the success of the Haswell design in 2013 built on 22nm, the Broadwell-Y architecture will not only be the first to market with a new microarchitecture, but will be the flagship product on Intel’s new 14nm tri-gate process technology.

The Intel Core M processor, as Broadwell-Y has been dubbed, includes impressive technological improvements over previous low power Intel processors that result in lower power, thinner form factors, and longer battery life designs. Broadwell-Y will stretch into even lower TDPs enabling 9mm or small fanless designs that maintain current battery lifespans. A new 2nd generation FIVR with modified power delivery design allows for even thinner packaging and a wider range of dynamic frequencies than before. And of course, along with the shift comes an updated converged core design and improved graphics performance.

All of these changes are in service to what Intel claims is a re-invention of the notebook. Compared to 2010 when the company introduced the original Intel Core processor, thus redirecting Intel’s direction almost completely, Intel Core M and the Broadwell-Y changes will allow for some dramatic platform changes.

broadwell-12.jpg

Notebook thickness will go from 26mm (~1.02 inches) down to a small as 7mm (~0.27 inches) as Intel has proven with its Llama Mountain reference platform. Reductions in total thermal dissipation of 4x while improving core performance by 2x and graphics performance by 7x are something no other company has been able to do over the same time span. And in the end, one of the most important features for the consumer, is getting double the useful battery life with a smaller (and lighter) battery required for it.

But these kinds of advancements just don’t happen by chance – ask any other semiconductor company that is either trying to keep ahead of or catch up to Intel. It takes countless engineers and endless hours to build a platform like this. Today Intel is sharing some key details on how it was able to make this jump including the move to a 14nm FinFET / tri-gate transistor technology and impressive packaging and core design changes to the Broadwell architecture.

Intel 14nm Technology Advancement

Intel consistently creates and builds the most impressive manufacturing and production processes in the world and it has helped it maintain a market leadership over rivals in the CPU space. It is also one of the key tenants that Intel hopes will help them deliver on the world of mobile including tablets and smartphones. At the 22nm node Intel was the first offer 3D transistors, what they called tri-gate and others refer to as FinFET. By focusing on power consumption rather than top level performance Intel was able to build the Haswell design (as well as Silvermont for the Atom line) with impressive performance and power scaling, allowing thinner and less power hungry designs than with previous generations. Some enthusiasts might think that Intel has done this at the expense of high performance components, and there is some truth to that. But Intel believes that by committing to this space it builds the best future for the company.

Continue reading our reveal of Intel's Broadwell Architecture and 14nm Process Technology!!

Intel's Knights Landing (Xeon Phi, 2015) Details

Subject: General Tech, Graphics Cards, Processors | July 2, 2014 - 12:55 AM |
Tagged: Intel, Xeon Phi, xeon, silvermont, 14nm

Anandtech has just published a large editorial detailing Intel's Knights Landing. Mostly, it is stuff that we already knew from previous announcements and leaks, such as one by VR-Zone from last November (which we reported on). Officially, few details were given back then, except that it would be available as either a PCIe-based add-in board or as a socketed, bootable, x86-compatible processor based on the Silvermont architecture. Its many cores, threads, and 512 bit registers are each pretty weak, compared to Haswell, for instance, but combine to about 3 TFLOPs of double precision performance.

itsbeautiful.png

Not enough graphs. Could use another 256...

The best way to imagine it is running a PC with a modern, Silvermont-based Atom processor -- only with up to 288 processors listed in your Task Manager (72 actual cores with quad HyperThreading).

The main limitation of GPUs (and similar coprocessors), however, is memory bandwidth. GDDR5 is often the main bottleneck of compute performance and just about the first thing to be optimized. To compensate, Intel is packaging up-to 16GB of memory (stacked DRAM) on the chip, itself. This RAM is based on "Hybrid Memory Cube" (HMC), developed by Micron Technology, and supported by the Hybrid Memory Cube Consortium (HMCC). While the actual memory used in Knights Landing is derived from HMC, it uses a proprietary interface that is customized for Knights Landing. Its bandwidth is rated at around 500GB/s. For comparison, the NVIDIA GeForce Titan Black has 336.4GB/s of memory bandwidth.

Intel and Micron have worked together in the past. In 2006, the two companies formed "IM Flash" to produce the NAND flash for Intel and Crucial SSDs. Crucial is Micron's consumer-facing brand.

intel-knights-landing.jpg

So the vision for Knights Landing seems to be the bridge between CPU-like architectures and GPU-like ones. For compute tasks, GPUs edge out CPUs by crunching through bundles of similar tasks at the same time, across many (hundreds of, thousands of) computing units. The difference with (at least socketed) Xeon Phi processors is that, unlike most GPUs, Intel does not rely upon APIs, such as OpenCL, and drivers to translate a handful of functions into bundles of GPU-specific machine language. Instead, especially if the Xeon Phi is your system's main processor, it will run standard, x86-based software. The software will just run slowly, unless it is capable of vectorizing itself and splitting across multiple threads. Obviously, OpenCL (and other APIs) would make this parallelization easy, by their host/kernel design, but it is apparently not required.

It is a cool way that Intel arrives at the same goal, based on their background. Especially when you mix-and-match Xeons and Xeon Phis on the same computer, it is a push toward heterogeneous computing -- with a lot of specialized threads backing up a handful of strong ones. I just wonder if providing a more-direct method of programming will really help developers finally adopt massively parallel coding practices.

I mean, without even considering GPU compute, how efficient is most software at splitting into even two threads? Four threads? Eight threads? Can this help drive heterogeneous development? Or will this product simply try to appeal to those who are already considering it?

Source: Intel

More Intel Inside Chromebooks

Subject: General Tech | April 3, 2014 - 12:19 PM |
Tagged: Braswell, Bay Trail, Intel, SoC, 14nm, idf

Intel's Atom has finally shaken the bad name that its progenitors have born as Bay Trail proves to be a great implementation of an SoC.  At IDF we received a tantalizing glimpse at the next generation of SoC from Intel, the 14nm Braswell chip though little was said of their ultra low powered Cherry Trail SoC for tablets.   Braswell is more than just a process shrink, Intel is working to increase their support of Chromebooks and Android by creating a 64-bit Android kernel that supports Android 4.4.  This seems to have paid off as Kirk Skaugen mentioned to The Inquirer that Intel chips will be present in 20 soon to be released models, up from 4 currently.

intelbroadwell.jpg

"INTEL HAS REVEALED PLANS to launch Braswell, a more powerful successor to the Bay Trail system on a chip (SoC) line used in low-cost devices like Chromebooks and budget PCs."

Here is some more Tech News from around the web:

Tech Talk

Source: The Inquirer

Intel claims Knight's Landing will slay HUMA and bare all CUDA's flaws

Subject: General Tech | November 20, 2013 - 09:53 AM |
Tagged: Xeon Phi, knights landing, Intel, 14nm

Intel has been talking up the Xeon Phi, first of the Knight's Landing chips which shall arrive in the not too distant future.  This new architecture is touted to bring a return of homogeneous systems architecture which will perform parallel processing on its many cores, currently 61 is the number being tossed around, at a level of performance that will exceed the GPU accelerated heterogeneous architecture being pushed by AMD and NVIDIA.  Whether this is true or not remains to be seen but many server builders may prefer the familiar CPU only architecture and as at least some of the Phi's will be available in rack mounted form and not just addin cards they may choose Intel out of habit.   You can also read about Micron's Automata Processor which The Register reports can outperform a 48-chip cluster of Intel Xeon 5650s in certain scenarios.

KNOTS01.jpg

"From Intel's point of view, today's hottest trend in high-performance computing – GPU acceleration – is just a phase, one that will be superseded by the advent of many-core CPUs, beginning with Chipzilla's next-generation Xeon Phi, codenamed "Knights Landing"."

Here is some more Tech News from around the web:

Tech Talk

Source: The Register

ARM TechCon 2013: Altera To Produce ARMv8 Chips on Intel 14nm Fabs

Subject: Processors, Mobile | October 29, 2013 - 09:24 AM |
Tagged: techcon, Intel, arm techcon, arm, Altera, 14nm

In February of this year Intel and Altera announced that they would be partnering to build Altera FPGAs using the upcoming Intel 14nm tri-gate process technology.  The deal was important for the industry as it marked one of the first times Intel has shared its process technology with another processor company.  Seen as the company's most valuable asset, the decision to outsource work in the Intel fabrication facilities could have drastic ramifications for Intel's computing divisions and the industry as a whole.  This seems to back up the speculation that Intel is having a hard time keeping their Fabs at anywhere near 100% utilization with only in-house designs.

Today though, news is coming out that Altera is going to be included ARM-based processing cores, specifically those based on the ARMv8 64-bit architecture.  Starting in 2014 Altera's high-end Stratix 10 FPGA that uses four ARM Cortex-A53 cores will be produced by Intel fabs.

The deal may give Intel pause about its outsourcing strategy. To date the chip giant has experimented with offering its leading-edge fab processes as foundry services to a handful of chip designers, Altera being one of its largest planned customers to date.

Altera believes that by combing the ARMv8 A53 cores and Intel's 14nm tri-gate transistors they will be able to provide FPGA performance that is "two times the core performance" of current high-end 28nm options.

alteraarm.JPG

While this news might upset some people internally at Intel's architecture divisions, the news couldn't be better for ARM.  Intel is universally recognized as being the process technology leader, generally a full process node ahead of the competition from TSMC and GlobalFoundries.  I already learned yesterday that many of ARM's partners are skipping the 20nm technology from non-Intel foundries and instead are looking towards the 14/16nm FinFET transitions coming in late 2014. 

ARM has been working with essentially every major foundry in the business EXCEPT Intel and many viewed Intel's chances of taking over the mobile/tablet/phone space as dependent on its process technology advantage.  But if Intel continues to open up its facilities to the highest bidders, even if those customers are building ARM-based designs, then it could drastically improve the outlook for ARM's many partners.

UPDATE (7:57pm): After further talks with various parties there are a few clarifications that I wanted to make sure were added to our story.  First, Altera's FPGAs are primarly focused on the markets of communication, industrial, military, etc.  They are not really used as application processors and thus are not going to directly compete with Intel's processors in the phone/tablet space.  It remains to be seen if Intel will open its foundries to a directly competing product but for now this announcement regarding the upcoming Stratix 10 FPGA on Intel's 14nm tri-gate is an interesting progression.

Source: EETimes

Poor yeilds will delay 14nm Broadwell chips

Subject: General Tech | October 16, 2013 - 10:12 AM |
Tagged: Intel, delay, Broadwell, 14nm

Sad news for those hoping to see Broadwell as Brian Krzanich confirmed that the delays we first heard about in June are still true and Broadwell will not be available until some time in 2014.  This slowdown of their Tick Tick strategy has been caused by the high density of defects on wafers which is driving the yields down on these chips which not only leads to less profitability but also means that supplies will be too low to go to market with.  He did give The Register some positive news, Intel is working on reducing the time it takes to implement changes to chips in production and within the next year they hope to be able to make changes to a chip three months before it is slated for release without negatively effecting yeilds.

Intel-14nm-Broadwell-Processor-Taped-Out-Months-Ago.jpg

"One of the biggest tasks that Intel CEO Brian Krzanich has set himself is reconfiguring Chipzilla so that it's quicker to build and deploy new products.

So it's a pity he has had to delay the rollout of 14-nanometer Broadwell processor chips until the first quarter of next year due to problems with quality control."

Here is some more Tech News from around the web:

Tech Talk

Source: The Register